Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Virus Res ; 339: 199286, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016504

RESUMO

The genetic diversity of the coronavirus (CoV) family poses a significant challenge for drug discovery and development. Traditional antiviral drugs often target specific viral proteins from specific viruses which limits their use, especially against novel emerging viruses. Antivirals with broad-spectrum activity overcome this limitation by targeting highly conserved regions or catalytic domains within viral proteins that are essential for replication. For rapid identification of small molecules with broad antiviral activity, assays with viruses representing family-wide genetic diversity are needed. Viruses engineered to express a reporter gene (i.e. luminescence, fluorescence, etc.) can increase the efficiency, sensitivity or precision of drug screening over classical measures of replication like observation of cytopathic effect or measurement of infectious titers. We have previously developed reporter virus systems for multiple other endemic, pandemic, epidemic and enzootic CoV. Human CoV OC43 (HCoV-OC43) is a human endemic CoV that causes respiratory infection with age-related exacerbations of pathogenesis. Here, we describe the development of a novel recombinant HCoV-OC43 reporter virus that expresses nano-luciferase (HCoV-OC43 nLuc), and its potential application for screening of antivirals against CoV.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Coronavirus , Humanos , Coronavirus Humano OC43/genética , Coronavirus/genética , Proteínas Virais , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Emerg Microbes Infect ; 12(2): 2256416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672505

RESUMO

The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , SARS-CoV-2 , Receptores de Hidrocarboneto Arílico/genética , Linhagem Celular
3.
Proc Natl Acad Sci U S A ; 120(28): e2304087120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399385

RESUMO

We recently reported that SARS-CoV-2 nucleocapsid (N) protein is abundantly expressed on the surface of both infected and neighboring uninfected cells, where it enables activation of Fc receptor-bearing immune cells with anti-N antibodies (Abs) and inhibits leukocyte chemotaxis by binding chemokines (CHKs). Here, we extend these findings to N from the common cold human coronavirus (HCoV)-OC43, which is also robustly expressed on the surface of infected and noninfected cells by binding heparan sulfate/heparin (HS/H). HCoV-OC43 N binds with high affinity to the same set of 11 human CHKs as SARS-CoV-2 N, but also to a nonoverlapping set of six cytokines. As with SARS-CoV-2 N, HCoV-OC43 N inhibits CXCL12ß-mediated leukocyte migration in chemotaxis assays, as do all highly pathogenic and common cold HCoV N proteins. Together, our findings indicate that cell surface HCoV N plays important evolutionarily conserved roles in manipulating host innate immunity and as a target for adaptive immunity.


Assuntos
Coronavirus Humano OC43 , Imunidade Inata , Nucleocapsídeo , SARS-CoV-2 , Humanos , Coronavirus Humano OC43/genética , Proteínas de Membrana , SARS-CoV-2/genética
4.
Nutrients ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447286

RESUMO

Auraptene (7-geranyloxycoumarin) is the abundant prenyloxycoumarin found in the fruits of Citrus spp. Auraptene has a variety of pharmacological and therapeutic functions, such as anticancer, antioxidant, immunomodulatory, and anti-inflammation activities, with excellent safety profiles. In this study, we evaluated the anticoronaviral activity of auraptene in HCoV-OC43-infected human lung fibroblast MRC-5 cells. We found that auraptene effectively inhibited HCoV-OC43-induced cytopathic effects with 4.3 µM IC50 and 6.1 µM IC90, resulting in a selectivity index (CC50/IC50) of >3.5. Auraptene treatment also decreased viral RNA levels in HCoV-OC43-infected cells, as detected through quantitative real-time PCR, and decreased the expression level of spike proteins and nucleocapsid proteins in virus-infected cells, as detected through the Western blot analysis and immunofluorescence staining. Time-of-addition analysis showed auraptene's inhibitory effects at the post-entry stage of the virus life cycle; however, auraptene did not induce the antiviral interferon families, IFN-α1, IFN-ß1, and IFN-λ1. Additionally, auraptene-treated MRC-5 cells during HCoV-OC43 infection decreased the MMP-9 mRNA levels which are usually increased due to the infection, as auraptene is a previously reported MMP-9 inhibitor. Therefore, auraptene showed antiviral activity against HCoV-OC43 infection, and we suggest that auraptene has the potential to serve as a therapeutic agent against human coronavirus.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Coronavirus Humano OC43/genética , Metaloproteinase 9 da Matriz
5.
J Med Virol ; 95(6): e28861, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310144

RESUMO

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Humanos , Estações do Ano , Betacoronavirus , China , Coronavirus Humano OC43/genética
6.
PLoS One ; 18(5): e0285481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155606

RESUMO

The "Russian Influenza"-coronavirus theory (RICT) proposes that the pandemic of 1889-1892, conventionally regarded as an influenza pandemic, was caused by the emergence of human coronavirus OC43 (HCoV-OC43) as a zoonosis of bovine coronavirus (BCoV). RICT is based on a Bayesian phylogenetic calculation of the date of the most recent common ancestor (MRCA) of HCoV-OC43 and BCoV. The theory also draws on comparison of both symptoms and some epidemiological parameters of the best studied coronavirus pandemic, i.e. COVID-19, with those reported in 1889-1892. The case is completed with circumstantial evidence involving a panzoonotic among cattle in the decade prior to the "Russian Influenza", with characteristics suggesting it may have been caused by BCoV. In this paper, we review the Bayesian phylogenetic evidence for RICT, replicating previous studies and adding our own, in each case critically reviewing the suitability of the datasets used and the parameters applied. We conclude that the most probable date for the MRCA of HCoV-OC43 and BCoV is 1898-1902. This is a decade too late for compatibility with RICT but happens to coincide with another serious outbreak of respiratory illness, reported in both the USA and the UK, in the winter of 1899-1900.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Influenza Humana , Humanos , Animais , Bovinos , Coronavirus Humano OC43/genética , Filogenia , Teorema de Bayes , COVID-19/epidemiologia
7.
CRISPR J ; 6(4): 359-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912815

RESUMO

CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Humanos , SARS-CoV-2/genética , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/genética , COVID-19/genética , Sistemas CRISPR-Cas/genética , Edição de Genes
8.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986065

RESUMO

A natural chalcone, cardamonin (2',4'-dihydroxy-6'-methoxychalcone; CDN) was isolated from the seeds of Alpinia katsumadai Hayata, which has been traditionally used to treat stomach aches. CDN has been reported to possess various pharmacological properties, including anticancer and anti-inflammatory effects. This study evaluated the antiviral activity of CDN against human coronavirus HCoV-OC43 and determined the mode of action in HCoV-OC43-infected human lung cell lines (MRC-5 and A549 cells). CDN significantly inhibited HCoV-OC43-induced cytopathic effects with an IC50 of 3.62 µM and a CC50 of >50 µM, resulting in a selectivity index of >13.81. CDN treatment reduced the level of viral RNA and the expression of spike and nucleocapsid proteins in HCoV-OC43-infected cells as determine through qRT-PCR and Western blot analysis. Additionally, the activation of p38 mitogen-activated protein kinase (MAPK) by anisomycin decreased viral protein expression, whereas an inhibitor of p38 MAPK signaling, SB202190, increased viral protein expression. CDN also amplified and extended the p38 MAPK signaling pathway in HCoV-OC43-infected cells. In conclusion, CDN inhibited HCoV-OC43 infection by activating the p38 MAPK signaling pathway and has potential as a therapeutic agent against human coronavirus.


Assuntos
Chalconas , Infecções por Coronavirus , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , Chalconas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pulmão/metabolismo , Proteínas Virais
9.
J Biol Chem ; 299(4): 103028, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805339

RESUMO

The emergence of SARS-CoV-2, which is responsible for the COVID-19 pandemic, has highlighted the need for rapid characterization of viral mechanisms associated with cellular pathogenesis. Viral UTRs represent conserved genomic elements that contribute to such mechanisms. Structural details of most CoV UTRs are not available, however. Experimental approaches are needed to allow for the facile generation of high-quality viral RNA tertiary structural models, which can facilitate comparative mechanistic efforts. By integrating experimental and computational techniques, we herein report the efficient characterization of conserved RNA structures within the 5'UTR of the HCoV-OC43 genome, a lab-tractable model coronavirus. We provide evidence that the 5'UTR folds into a structure with well-defined stem-loops (SLs) as determined by chemical probing and direct detection of hydrogen bonds by NMR. We combine experimental base-pair restraints with global structural information from SAXS to generate a 3D model that reveals that SL1-4 adopts a topologically constrained structure wherein SLs 3 and 4 coaxially stack. Coaxial stacking is mediated by short linker nucleotides and allows SLs 1 to 2 to sample different cojoint orientations by pivoting about the SL3,4 helical axis. To evaluate the functional relevance of the SL3,4 coaxial helix, we engineered luciferase reporter constructs harboring the HCoV-OC43 5'UTR with mutations designed to abrogate coaxial stacking. Our results reveal that the SL3,4 helix intrinsically represses translation efficiency since the destabilizing mutations correlate with increased luciferase expression relative to wildtype without affecting reporter mRNA levels, thus highlighting how the 5'UTR structure contributes to the viral mechanism.


Assuntos
Regiões 5' não Traduzidas , Coronavirus Humano OC43 , RNA Viral , Coronavirus Humano OC43/genética , Luciferases/genética , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA Viral/genética
10.
Int J Legal Med ; 137(3): 897-902, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807752

RESUMO

In the context of the coronavirus disease (COVID-19) pandemic, measures were taken to protect the population from infection. These were almost completely lifted in several countries in the spring of 2022. To obtain an overview of the spectrum of respiratory viruses encountered in autoptical routine case work, and their infectivity, all autopsy cases at the Institute of Legal Medicine in Frankfurt/M. with flu-like symptoms (among others) were examined for at least 16 different viruses via multiplex PCR and cell culture. Out of 24 cases, 10 were virus-positive in PCR: specifically, 8 cases with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 1 with respiratory syncytial virus (RSV), and 1 with SARS-CoV-2 and the human coronavirus OC43 (HCoV-OC43), as a double infection. The RSV infection and one of the SARS-CoV-2 infections were only detected due to the autopsy. Two SARS-CoV-2 cases (postmortem interval of 8 and 10 days, respectively) showed infectious virus in cell culture; the 6 other cases did not show infectious virus. In the RSV case, virus isolation by cell culture was unsuccessful (Ct value of 23.15 for PCR on cryoconserved lung tissue). HCoV-OC43 was measured as non-infectious in cell culture, with a Ct value of 29.57. The detection of RSV and HCoV-OC43 infections may shed light on the relevance of respiratory viruses other than SARS-CoV-2 in postmortem settings; however, further, more extensive studies are needed for a robust assessment of the hazard potential due to infectious postmortem fluids and tissues in medicolegal autopsy settings.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Humanos , Autopsia , Pandemias , Estações do Ano , SARS-CoV-2 , Infecções Respiratórias/epidemiologia , Coronavirus Humano OC43/genética , Reação em Cadeia da Polimerase Multiplex
11.
PeerJ ; 11: e14776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846448

RESUMO

CCCH-type zinc figure proteins (ZFP) are small cellular proteins that are structurally maintained by zinc ions. Zinc ions coordinate the protein structure in a tetrahedral geometry by binding to cystine-cystine or cysteines-histidine amino acids. ZFP's unique structure enables it to interact with a wide variety of molecules including RNA; thus, ZFP modulates several cellular processes including the host immune response and virus replication. CCCH-type ZFPs have shown their antiviral efficacy against several DNA and RNA viruses. However, their role in the human coronavirus is little explored. We hypothesized that ZFP36L1 also suppresses the human coronavirus. To test our hypothesis, we used OC43 human coronavirus (HCoV) strain in our study. We overexpressed and knockdown ZFP36L1 in HCT-8 cells using lentivirus transduction. Wild type, ZFP36L1 overexpressed, and ZFP36L1 knockdown cells were each infected with HCoV-OC43, and the virus titer in each cell line was measured over 96 hours post-infection (p.i.). Our results show that HCoV-OC43 replication was significantly reduced with ZFP36L1 overexpression while ZFP36L1 knockdown significantly enhanced virus replication. ZFP36L1 knockdown HCT-8 cells started producing infectious virus at 48 hours p.i. which was an earlier timepoint as compared to wild -type and ZFP36L1 overexpressed cells. Wild-type and ZFP36L1 overexpressed HCT-8 cells started producing infectious virus at 72 hours p.i. Overall, the current study showed that overexpression of ZFP36L1 suppressed human coronavirus (OC43) production.


Assuntos
Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , Cistina , Linhagem Celular , Replicação Viral/genética , Fator 1 de Resposta a Butirato , Tristetraprolina
12.
J Interferon Cytokine Res ; 43(1): 35-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651846

RESUMO

The human beta-coronavirus strain, OC43, provides a useful model for testing the antiviral activity of various agents. We compared the activity of several antiviral drugs against OC43, including remdesivir, chloroquine, interferon (IFN)-ß, IFN-λ1, and IFN-λ4, in two distinct cell types: human colorectal carcinoma cell line (HCT-8 cells) and normal human bronchial epithelial (NHBE) cells. We also tested whether these agents mediate additive, synergistic, or antagonistic activity against OC43 infection when used in combination. When used as single agents, remdesivir exhibited stronger antiviral activity than chloroquine, and IFN-ß exhibited stronger activity than IFN-λ1 or IFN-λ4 against OC43 in both HCT-8 and NHBE cells. Anakinra (IL-1 inhibitor) and tocilizumab (IL-6 inhibitor) did not mediate any antiviral activity. The combination of IFN-ß plus chloroquine or remdesivir resulted in higher synergy scores and higher expression of IFN-stimulated genes than did IFN-ß alone. In contrast, the combination of remdesivir plus chloroquine resulted in an antagonistic interaction in NHBE cells. Our findings indicate that the combined use of IFN-ß plus remdesivir or chloroquine induces maximal antiviral activity against human coronavirus strain OC43 in primary human respiratory epithelial cells. Furthermore, our experimental OC43 virus infection model provides an excellent method for evaluating the biological activity of antiviral drugs.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/metabolismo , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Interferons/metabolismo
13.
J Neurovirol ; 29(1): 35-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36719595

RESUMO

Clinical manifestations of human coronavirus (HCoV)-related diseases are mostly related to the respiratory system, although secondary complications such as headache, anosmia, ageusia, and myalgia have been reported. HCoV infection and replication in chemosensory cells associated with ageusia and anosmia is poorly understood. Here, we characterized HCoV-OC43 and SARS-CoV-2 infection in two types of chemosensory cells, olfactory and taste cells, with their unique molecular and histological characteristics. We first assessed HCoV-OC43 infection in in vitro cultured human olfactory epithelial cells (hOECs) and fungiform taste papilla (HBO) cells. Interestingly, while both cell types were susceptible to HCoV-OC43 infection, viral replication rates were significantly reduced in HBO cells compared to hOECs. More interestingly, while culture media from hOECs was able to produce secondary infection in Vero cells, there was very limited secondary infection from HBO cells, suggesting that HBO cells may not be able to release infectious virus. On the other hand, unlike HCoV-OC43, SARS-CoV-2 showed comparable levels of viral infection rates in both hOECs and HBO cells. Furthermore, our RT-qPCR-based gene array studies revealed that several key genes involved in taste and olfactory functions were significantly altered by SARS-CoV-2 infection. These results may suggest a possible mechanism associated with chemosensory symptoms, such as anosmia and ageusia in patients infected with SARS-CoV-2.


Assuntos
Ageusia , COVID-19 , Coinfecção , Coronavirus Humano OC43 , Animais , Chlorocebus aethiops , Humanos , Células Vero , Anosmia , SARS-CoV-2 , Coronavirus Humano OC43/genética
14.
Jpn J Infect Dis ; 76(1): 27-33, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36047175

RESUMO

Common Human Coronaviruses (HCoVs), such as NL63, HKU1, 229E, and OC43, induce respiratory tract infections worldwide. Epidemiological studies of HCoVs are of paramount importance because the disease burden and trajectory (in years) have not been well addressed in adults. Here, we aimed to describe the burden of HCoVs in a hospital setting over five years before the coronavirus disease 2019 pandemic. This was a retrospective study of patients (>18 years) between January 1, 2015, and January 1, 2020, whose respiratory specimens were tested by multiplex real-time polymerase chain reaction. In total, 7,861 respiratory samples (4,540 patients) were included, 38% of which tested positive for any respiratory virus. Of these, 212 (12.2%) samples were positive for HCoVs, and their co-infection with other respiratory viruses was 30.6%. Rhinovirus (27.6%) was the most common co-infection among all three HCoVs. The overall prevalence of HCoVs tended to be the highest in the winter (40.9%). Patients aged ≥60 years had the highest prevalence of overall HCoVs (39.7%). Given the duration and large sample size, this study from Turkey is one of the largest to date among adults in the literature. These epidemiological data and molecular surveillance of HCoVs have important implications for the control and prevention of respiratory infections.


Assuntos
COVID-19 , Coinfecção , Coronavirus Humano OC43 , Infecções Respiratórias , Humanos , Adulto , Pandemias , COVID-19/epidemiologia , Prevalência , Turquia/epidemiologia , Estudos Retrospectivos , Coinfecção/epidemiologia , Infecções Respiratórias/epidemiologia , Coronavirus Humano OC43/genética
15.
Viruses ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36560596

RESUMO

With the emergence of SARS-CoV-2, routine surveillance combined with sequence and phylogenetic analysis of coronaviruses is urgently required. In the current study, the four common human coronaviruses (HCoVs), OC43, NL63, HKU1, and 229E, were screened in 361 clinical samples collected from hospitalized children with respiratory symptoms during four winter seasons. RT-PCR-based detection and typing revealed different prevalence rates of HCoVs across the four seasons. Interestingly, none of the four HCoVs were detected in the samples (n = 100) collected during the winter season of the COVID-19 pandemic. HCoV-OC43 (4.15%) was the most frequently detected, followed by 229E (1.1%). Partial sequences of S and N genes of OC43 from the winter seasons of 2015/2016 and 2021/2022 were used for sequence and phylogenetic analysis. Multiple sequence alignment of the two Saudi OC43s strains with international strains revealed the presence of sequence deletions and several mutations, of which some changed their corresponding amino acids. Glycosylation profiles revealed a number of O-and N-glycosylation sites in both genes. Based on phylogenetic analysis, four genotypes were observed with Riyadh strains grouped into the genotype C. Further long-term surveillance with a large number of clinical samples and sequences is necessary to resolve the circulation patterns and evolutionary kinetics of OC43 in Saudi Arabia.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Infecções Respiratórias , Humanos , Criança , Filogenia , Coronavirus Humano OC43/genética , Arábia Saudita/epidemiologia , Prevalência , Pandemias , COVID-19/epidemiologia , SARS-CoV-2/genética , Estações do Ano
16.
J Clin Virol ; 154: 105247, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907394

RESUMO

BACKGROUND: The importance of endemic human coronavirus (HCoV) in children has been insufficiently elucidated upon. Our aims were to develop subgenomic (sg) mRNA tests for HCoV species OC43 and NL63, and to evaluate the relationships to HCoV genomic loads, single HCoV detections and clinical manifestations. METHODS: We have used an 11-yearlong cohort study of children admitted with respiratory tract infection (RTI) and hospital controls. Nasopharyngeal aspirates were analyzed for HCoV subtypes OC43 and NL63 with in-house diagnostic PCR. Positive samples were tested with newly developed real-time PCRs targeting sg mRNA coding for the nucleocapsid protein. RESULTS: OC43 sg mRNA was detected in 86% (105/122) of available OC43-positive samples in the RTI group, and in 63% (12/19) of control samples. NL63 sg mRNA was detected in 72% (71/98) and 71% (12/17) of available NL63-positive patient and control samples, respectively. In RTI samples, sg mRNA detection was strongly associated with a Ct value <32 in both diagnostic PCR tests (OC43: OR = 54, 95% CI [6.8-428]; NL63: OR = 42, 95% CI [9.0-198]) and single NL63 detections (OR = 6.9, 95% CI [1.5-32]). Comparing RTI and controls, only OC43 was associated with RTI when adjusted for age (aOR = 3.2, 95% CI [1.1-9.4]). CONCLUSION: We found strong associations between OC43 and NL63 sg mRNA and high viral genomic loads. sg mRNA for OC43 was associated with RTI. The association between sg mRNA and clinical manifestations needs further evaluation.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Coronavirus , Infecções Respiratórias , Criança , Estudos de Coortes , Coronavirus/genética , Coronavirus Humano OC43/genética , Genômica , Humanos , Lactente , RNA Mensageiro/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia
17.
Arch Virol ; 167(11): 2173-2180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35840864

RESUMO

Human coronavirus HKU1 (HCoV-HKU1) is a pathogen that causes acute respiratory tract infections in children and circulates worldwide. To investigate the molecular characteristics and genetic diversity of HCoV-HKU1 in China, a molecular epidemiological analysis based on complete genome sequences was performed. A total of 68 endemic-HCoV-positive samples were identified from 1358 enrolled patients during 2018, including four HCoV-229E, nine HCoV-OC43, 24 HCoV-NL63, and 31 HCoV-HKU1. The detection rate of endemic HCoVs was 5.01% during 2018, while for HCoV-HKU1, it was 2.28%. Eight complete genomic sequences of HCoV-HKU1 were obtained and compared to 41 reference genome sequences corresponding to genotypes A, B, and C, obtained from the GenBank databank. Of the eight HKU1 sequences, four belonged to genotype A and four belonged to genotype B. No genotype C strains were detected in this study. For genotype A, 18 variations in the S protein with respect to the reference sequence were present in more than 5% of the sequences, whereas for genotype B, this number was 25. Most of the amino acid changes occurred in the S1 subunit. No amino acid substitutions were found in the sites that are essential for interaction with neutralizing antibodies, while a 510T amino acid insertion was found in almost one third of genotype B sequences. About 82-83, 85-89, and 88-89 predicted N-glycosylation sites and 7-13, 6-8, and 9 predicted O-glycosylation sites were found among the sequences of genotype A, B, and C, respectively. Six conserved O-glycosylation sites were present in all of the genotype A sequences. Only genotype A and B strains were detected after 2005. The S protein exhibited relatively high diversity, with most of the amino acid changes occurring in the S1 subunit.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Infecções Respiratórias , Anticorpos Neutralizantes , Betacoronavirus , Criança , China/epidemiologia , Coronavirus Humano OC43/genética , Humanos
18.
Cells ; 11(12)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740988

RESUMO

Viruses within a given family often share common essential genes that are highly conserved due to their critical role for the virus's replication and survival. In this work, we developed a proof-of-concept for a pan-coronavirus CRISPR effector system by designing CRISPR targets that are cross-reactive among essential genes of different human coronaviruses (HCoV). We designed CRISPR targets for both the RNA-dependent RNA polymerase (RdRp) gene as well as the nucleocapsid (N) gene in coronaviruses. Using sequencing alignment, we determined the most highly conserved regions of these genes to design guide RNA (gRNA) sequences. In regions that were not completely homologous among HCoV species, we introduced mismatches into the gRNA sequence and tested the efficacy of CasRx, a Cas13d type CRISPR effector, using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in HCoV-OC43. We evaluated the effect that mismatches in gRNA sequences has on the cleavage activity of CasRx and found that this CRISPR effector can tolerate up to three mismatches while still maintaining its nuclease activity in HCoV-OC43 viral RNA. This work highlights the need to evaluate off-target effects of CasRx with gRNAs containing up to three mismatches in order to design safe and effective CRISPR experiments.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Coronavirus , Coronavirus Humano OC43/genética , Humanos , Polimorfismo de Nucleotídeo Único , RNA Guia de Cinetoplastídeos/genética , RNA Viral/genética
19.
Viruses ; 14(5)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632836

RESUMO

Four endemic coronaviruses infect humans and cause mild symptoms. Because previous analyses were based on a limited number of sequences and did not control for effects that affect molecular dating, we re-assessed the timing of endemic coronavirus emergence. After controlling for recombination, selective pressure, and molecular clock model, we obtained similar tMRCA (time to the most recent common ancestor) estimates for the four coronaviruses, ranging from 72 (HCoV-229E) to 54 (HCoV-NL63) years ago. The split times of HCoV-229E and HCoV-OC43 from camel alphacoronavirus and bovine coronavirus were dated ~268 and ~99 years ago. The split times of HCoV-HKU1 and HCoV-NL63 could not be calculated, as their zoonoticic sources are unknown. To compare the timing of coronavirus emergence to that of another respiratory virus, we recorded the occurrence of influenza pandemics since 1500. Although there is no clear relationship between pandemic occurrence and human population size, the frequency of influenza pandemics seems to intensify starting around 1700, which corresponds with the initial phase of exponential increase of human population and to the emergence of HCoV-229E. The frequency of flu pandemics in the 19th century also suggests that the concurrence of HCoV-OC43 emergence and the Russian flu pandemic may be due to chance.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Influenza Humana , Animais , Bovinos , Coronavirus Humano 229E/genética , Infecções por Coronavirus/epidemiologia , Coronavirus Humano OC43/genética , Humanos , Fatores de Tempo
20.
Virol J ; 19(1): 67, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410305

RESUMO

BACKGROUND: The newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four seasonal human coronaviruses (HCoVs) (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1) still circulate worldwide. The early clinical symptoms of SARS-CoV-2 and seasonal HCoV infections are similar, so rapid and accurate identification of the subtypes of HCoVs is crucial for early diagnosis, early treatment, prevention and control of these infections. However, current multiplex molecular diagnostic techniques for HCoV subtypes including SARS-CoV-2 are limited. METHODS: We designed primers and probes specific for the S and N genes of SARS-CoV-2, the N gene of severe acute respiratory syndrome coronavirus (SARS-CoV), and the ORF1ab gene of four seasonal HCoVs, as well as the human B2M gene product. We developed and optimized a quadruple quantitative real-time PCR assay (qq-PCR) for simultaneous detection of SARS-CoV-2, SARS-CoV and four seasonal HCoVs. This assay was further tested for specificity and sensitivity, and validated using 184 clinical samples. RESULTS: The limit of detection of the qq-PCR assay was in the range 2.5 × 101 to 6.5 × 101 copies/µL for each gene and no cross-reactivity with other common respiratory viruses was observed. The intra-assay and inter-assay coefficients of variation were 0.5-2%. The qq-PCR assay had a 91.9% sensitivity and 100.0% specificity for SARS-CoV-2 and a 95.7% sensitivity and 100% specificity for seasonal HCoVs, using the approved commercial kits as the reference. Compared to the commercial kits, total detection consistency was 98.4% (181/184) for SARS-CoV-2 and 98.6% (142/144) for seasonal HCoVs. CONCLUSION: With the advantages of sensitivity, specificity, rapid detection, cost-effectiveness, and convenience, this qq-PCR assay has potential for clinical use for rapid discrimination between SARS-CoV-2, SARS-CoV and seasonal HCoVs.


Assuntos
COVID-19 , Coronavirus Humano NL63 , Coronavirus Humano OC43 , COVID-19/diagnóstico , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...